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ABSTRACT 

ATHENA (Advanced Telescope for High-ENergy Astrophysics) is the next high-energy astrophysical mission of the 
European Space Agency. Media Lario leads an industrial and scientific team that has developed a process to align and 
integrate more than 700 silicon pore optics mirror modules into the ATHENA X-ray telescope. The process is based on 
the ultra-violet imaging at 218 nm of each mirror module on the focal plane of a 12 m focal length optical bench. 
Specifically, the position of the centroid of the point spread function produced by each mirror module when illuminated 
by a collimated plane is used to align each mirror module. Experimental integration tests and correlation with X-ray 
measurement at the PANTER test facility in Münich have demonstrated that this process meets the accuracy 
requirement. This technique allows arbitrary integration sequence and mirror module exchangeability. Moreover, it 
enables monitoring the telescope point spread function during the integration phase. 

Keywords: X-ray optics, X-ray telescopes, ATHENA, Silicon Pore Optics, Integration, Optical Alignment. 
 

1. INTRODUCTION 
The ATHENA (Advanced Telescope for High-ENergy Astrophysics) mission [1]-[3] of the European Space Agency is 
based on an X-ray telescope with a focal length of 12 m and an angular resolution of 5 arcsec half energy width (HEW). 
The telescope consists in a 2.5 m circular supporting structure on which about 700 Silicon pore optics (SPO) mirror 
modules (MM) [4] are integrated. Media Lario and a scientific and industrial team composed by ADS International, 
BCV Progetti, Cosine, INAF-OAB, and TAS-I have developed the process for the alignment and assembly of the 700 
MMs into the ATHENA telescope within the 1.5 arcsec (1 arcsec goal) [5] error budget allocated for integration. The 
process has the following distinguishing characteristics: 

• implementation in standard ISO 5/6 cleanroom (no vacuum infrastructure needed); 
• integration of 2 MMs per day, equivalent to 2-year total integration time for the entire telescope; 
• arbitrary integration sequence of the 700 MMs; 
• option to remove, re-align, or replace any MM in any integration sequence scenario; 
• full-telescope illumination, to monitor the optical performance during integration; 
• easy telescope dismount/realign procedures for intermediate tests at X-ray facilities.    

The alignment and integration concept consists in using a vertical optical bench to capture the focal plane image of each 
SPO MM while illuminated by a reference plane wave at a wavelength of 218 nm. The light emitted by the UV source is 
reflected by a parabolic mirror to generate a beam collimated to better than 95 km, thus simulating illumination from 
deep  
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Figure 8. Comparison of UV and X-ray centroid position. 

Focal plane images have been acquired for twenty separate MM sections along the azimuthal direction, and the 
corresponding centroids have been calculated from the main lobe of the diffraction pattern. The same measurements 
have been repeated at the PANTER test facility at 1.49 keV (Aluminum kα line). The correlation between UV and X-ray 
metrology has been verified by plotting the azimuthal (horizontal) and radial (vertical) centroid shifts as a function of the 
position of the illuminated MM section (Figure 8). The standard deviation of the position difference of the UV and X-ray 
centroids is 0.38 arcsec along azimuth and 0.61 arcsec along radius against an allocated budget of 0.25 arcsec. The result 
is promising, and there is ample margin of improvement in the measurement setups, as follows: 

• the UV measurement illuminated the entire MM, whereas only about 50% of each pore was illuminated at X-
ray because of the finite source distance (120 m);  

• after this test campaign, the optical bench has been improved with more powerful (15x) and more stable (25x) 
UV source, a more efficient CCD camera, and higher efficiency mirror coating;  

• the MM test vehicle was an initial experimental unit with HEW of 15-40 arcsec, whereas much better MMs are 
expected for the flight phase. 

4. ALIGNMENT ERROR BUDGET 

4.1. Error budget of alignment of single mirror module  

The robustness of the alignment procedure is supported by extensive ray-tracing simulations at X-ray and UV 
wavelengths. The main driver for the definition of the alignment metrology and procedure and for the design of the 
telescope structure is the error budget for the angular resolution of the ATHENA telescope, as set by the Agency (Table 
1). The integration of about 700 MMs has a total allocated error budget of 1.5 arcsec (goal 1 arcsec). We have further 
broken this global error value into specifications for a single MM, which has then become the main performance driver 
for the metrology and integration process. We have assumed the following simplified one-dimensional model: 

1. all MMs have the same PSF on the telescope focal plane; 
2. the PSF of each MM is described by a one-dimensional Gaussian function; 
3. the effective area is the same for all MMs; 
4. the distribution of the alignment error is a one-dimensional Gaussian function. 

Table 1. HEW error budget for the ATHENA telescope. 

HEW telescope error budget Requirement [arcsec] Goal [arcsec] 
Mirror Module 4.3 2.5 
Alignment and integration 1.5 1.0 
Distortions 1.5 1.0 
Spacecraft related 1.0 0.5 
Margin 1.0 0.5 
Root Square Sum 5.0 3.0 
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Table 2. Ray-tracing simulation of the telescope HEW using a 2D Gaussian distribution of the centroids position errors. 

HEW of individual MM 
[arcsec] 

1σ MM integration error 
[arcsec] 

HEW of the telescope  
[arcsec] 

3.5 
1 3.9  
2 4.3  

4 
1 4.4  
2 5.1 

The effect of the MMs alignment errors is simulated by the centroid shift of each MM, described with a one-dimensional 
Gaussian distribution with standard deviation ߪ. The total PSF is the convolution of the PSF of the MMs with their 
centroid shifts, both described by one-dimensional Gaussian distributions. The convolution is also a Gaussian function 
with variance equal to the sum of the variances of the two original Gaussian functions. Therefore, the HEW of the entire 
telescope is given by HEW୭୮୳୪ୟ୲୧୭୬ = ටHEWଶ + (1.349σୡୣ୬୲୰୭୧ୢୱ)ଶ 

where 1.349 is the ratio between the HEW and the standard deviation for a one-dimensional Gaussian function. Since the 
goal for the HEW of each MM is 2.5 arcsec and 1 arcsec is allocated in quadrature for the MMs alignment and 
integration error, the HEW of the entire integrated MM population is 2.7 arcsec. Consequently, the ߪ of the distribution 
of the centroids after integration must be smaller than σୡୣ୬୲୰୭୧ୢୱ ≤ 11.349ටHEW୭୮୳୪ୟ୲୧୭୬ଶ − HEWଶ = 11.349 = 0.74	arcsec 
Therefore, 0.74 arcsec is the error budget (standard deviation) allocated for the alignment of each individual MM in 
order to meet the 1 arcsec error budget goal for the entire population of ≈700 MMs. To further support our analysis, we 
have verified the one-dimensional assumption 4 above by raytracing of two-dimensional Gaussian distribution of the 
position errors of the centroids. The results (Table 2) closely match the simplified approach. 

Table 3. Sub-system integration error budget for the demonstrator and for the FM (X, Y, Z correspond to azimuthal, radial 
and optical axis coordinates). 

Sub System  Parameter Demonstrator Flight module 
Telescope 
integration 

HEW < 1.5 arcsec < 1.5 arcsec 

Effective area loss < 5% < 1% 

MM accuracy Accuracy of MM focal length < 5 mm < 1.5 ÷ 2.5 mm 
 X and Y alignment accuracy of brackets < 0.5 mm < 0.5 mm 

MM alignment Maximum X and Y errors  < 12 µm < 12 µm 

Maximum RX error < 100 arcsec < 10 ÷ 30 arcsec 
 Maximum RY error < 400 arcsec < 30 ÷ 120 arcsec 

Optical bench Collimation of UV illumination beam > 41 km > 95 km 
 Collimation stability  > 41 km > 1500 km 
 Z position accuracy of the source < 160 µm < 380 µm 
 Z position stability of the source < 160 µm < 23 µm 
 Z position accuracy of the CCD camera < 3.5 mm < 1.5 mm 
 Z position stability of the CCD camera < 3.5 mm < 93 µm 
 RZ stability during curing < 3.2 arcsec < 1.5 ÷ 9 arcsec 
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Figure 9. Demonstrator design (left) and build (centre, right) with two SPO MMs aligned and integrated on the mirror 
structure element. 

4.2. Subsystem and component level specifications 

A set of lower level specifications for the main subsystems and components has been derived from the high-level 
telescope requirements. They include the alignment tolerance of the mirror modules, the accuracy and stability of the 
optical bench and the optical performance of the mirror modules. This set of requirements is summarized in Table 3 for 
both the demonstrator and, preliminarily, the flight module. 

5. INTEGRATION DEMONSTRATOR  
This alignment and integration process and its associated metrology and facility have been experimentally verified on a 
representative ATHENA telescope demonstrator. The demonstrator consists of two SPO MMs integrated in a mirror 
structure element (MSE) that is an exact cut-out of row 8 of the ATHENA telescope mirror structure (Figure 9). The 
MSE is made of Titanium and can accommodate up to three MMs spaced by 7.25° in azimuth. The MSE is fixed to an 
additional support by means of three flexures so that it can be shaken and thermal tested so that the MMs are loaded with 
the typical ATHENA mission loads. First, we have aligned and bonded MMs #0025 and #0027 in the MSE, followed by 
X-ray tests at PANTER. Then we have removed, re-aligned and re-integrated the MM #0025 to demonstrate that our 
process allows the removal and replacement of any MMs at any telescope population stage. The demonstrator has then 
been again tested at PANTER. 

The measurements at the PANTER test facility in Münich has been performed at 1.49 keV to confirm the achieved 
alignment tolerance. The main objective of the test is the alignment and integration of the MMs at the x-FWHM (i.e. 
azimuthal FWHM) focal length, where the transversal PSF performance is only few arcseconds. This decision has been 
taken after analyzing the X-ray characterization of the individual MMs done at the X-ray beam line of the Bessy II 
facility [10]. In fact, both MMs have best transversal PSF at a focal length of 11,963 mm, instead of the nominal 12,000 
mm, whereas the best HEW was considerably larger than the FWHM and with a focal length 50-60 mm shorter. HEW 
and FWHM measured at the nominal focal length are shown in Table 4. 

Figure 10 shows the UV and X-ray images of the resulting PSF, with clearly visible overlapped centroids. Figure 11 
shows the X-ray HEW (top), x-FWHM (middle) and the centroid distance (bottom), all plotted against the focal distance.  

   
Figure 10. Demonstrator PSF at 218 nm (left) and at 1.49 keV at intra, nominal, and extra focal positions (right). 
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Figure 11. From top to bottom, X-ray HEW, x-FWHM (azimuthal), and distance between the two centroids plotted as a function 
of the focal distance. 

In particular, the bottom graph of Figure 11 showing the difference between the positions of the two MM centroids 
plotted as a function of the focal distance, confirms that the two MMs have been integrated at their best focal distance of 
11,963 mm where the distance between the centroids’ positions is the smallest. This difference is 7 µm in X and 36 µm 
in Y, for a total distance of. 36.6 µm. Since at PANTER the optics is positioned at the finite distance of 120 m from the 
point source, the effective focal length of the MMs increases from the nominal 11,963 mm to 13,270 mm. Consequently, 
the position difference of 36.6 µm between the centroids of the 2 MMs corresponds to 0.57 arcsec, well within the 
allocated budget of 0.74 arcsec discussed in Section 4.  

Finally, it should be underlined that MM #0025 has been disassembled from the MSE, cleaned, re-aligned, and bonded 
again to the same housing of the MSE, as per agreed test plan, without any optical degradation or variation, thus 
demonstrating the remove-and-replace capability of MMs of the integration process. 

Table 4. FWHM results of the 2-MM Integration Demonstrator. 

Optical element Focal length FWHM HEW 
MM #0025 11,963 mm 1.4 arcsec 19.3 arcsec 
MM #0027 11,963 mm 1.6 arcsec 17.5 arcsec 
MM #0025 + MM #0027 11,963 mm 2.0 arcsec 18.1 arcsec 
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6. CONCLUSIONS 
Media Lario and the team of scientific and industrial partners have developed the process for the alignment and 
integration of about 700 silicon pore optics mirror modules in the 2.5 m diameter structure of the X-ray ATHENA 
telescope.  

The process has been implemented at the Medial Lario 12 m focal length optical bench and a representative 
demonstrator with two silicon pore optics mirror modules has been successfully integrated. The distance between the 
position of the centroids of the two mirror modules measured at X-ray wavelength at the PANTER test facility is 0.57 
arcsec, with no changes after removal and re-integration of one MM. This is well within the 0.74 arcsec goal derived, for 
each individual MM alignment, from the overall telescope alignment and integration budget of 1 arcsec. 
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