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ABSTRACT

We present photometric redshifts for 1,031 X-ray sources in the X-ATLAS field, using the machine learning technique TPZ
(Kind2013). X-ATLAS covers 7.1 deg2 observed with the XMM-Newton within the Science Demonstration Phase (SDP) of the H-
ATLAS field, making it one of the largest contiguous areas of the sky with both XMMNewton and Herschel coverage. All of the
sources have available SDSS photometry while 810 have additionally mid-IR and/or near-IR photometry. A spectroscopic sample
of 5,157 sources primarily in the XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, is
used for the training of the algorithm. Our analysis reveals that the algorithm performs best when the sources are split, based on
their optical morphology, into point-like and extended sources. Optical photometry alone is not enough for the estimation of accurate
photometric redshifts, but the results greatly improve when, at least, mid-IR photometry is added in the training process. In particular,
our measurements show that the estimated photometric redshifts for the X-ray sources of the training sample, have a normalized
absolute median deviation, nmad≈0.06, and the percentage of outliers, η=10-14%, depending on whether the sources are extended or
point-like. Our final catalogue contains photometric redshifts for 933 out of the 1,031 X-ray sources with a median redshift of 0.9.
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1. Introduction

Current and future surveys (e.g. XMM, eROSITA, DES, Euclid)
will provide us with large datasets that contain hundreds of thou-
sands of sources. Spectroscopy is expensive in telescope time
and challenging to complete for large samples, thus photometric
redshift (photo-z) estimations have become a necessity in obser-
vational astronomy nowadays. Although photo-z estimations are
cheaper and the only mean to estimate distances for large sam-
ples, they are also subject to systematics and higher uncertainties
compared to spectroscopic redshift estimations (spec-z).

The pursuit of accurate photometric redshifts has led to the
development of many photo-z estimation methods that can be
divided into two main categories: template fitting (e.g. Bram-
mer et al. 2008) and machine learning (e.g. Carrasco Kind &
Brunner 2013) techniques, although there are some hybrid (e.g.
Beck et al. 2017) ones, as well. The template fitting techniques
determine the photometric redshifts by fitting synthetic spectral
templates, either empirical ones or synthesized from stellar pop-
ulation models to observational spectral templates. A number of
variations of this technique exist in the literature, e.g. Bayesian
Photometric Redshifts (BPZ; Benitez 2000), Easy and Accurate
Redshifts from Yale (EAZY; Brammer et al. 2008). Machine-
learning techniques, also known as empirical methods, use a
spectroscopic dataset to train an algorithm and then the trained
algorithm is applied to a photometric sample to estimate pho-
tometric redshifts. Examples of empirical methods include the
Artificial neural network (ANNz; Collister & Lahav 2004; La-

hav & Collister 2012) and random forest techniques, e.g. Trees
for Photo-Z (TPZ; Carrasco Kind & Brunner 2013).

Each of the aforementioned techniques has its own pros and
cons. Beck et al. (2017) compared the performance of eight
photo-z estimation methods (four template fitting techniques and
four machine-learning techniques). Their analysis revealed that
all methods perform adequately when the training set coverage
is sufficient but their performance falls when extrapolation is re-
quired. Especially random forest techniques are not expected to
perform well beyond the boundaries of the training set. On the
other hand, the latter techniques perform better compared to the
other techniques when the photometric measurement errors in-
crease. Beck et al. (2017) concluded that none of the methods is
superior and a trade-off has to be made depending on the avail-
able training set, i.e. its photometric accuracy and coverage.

The machine learning methods have been successfully ap-
plied for the derivation of photometric redshifts for galaxies (e.g.
SDSS; Beck et al. 2016) and optical QSOs (e.g. Brescia et al.
2015; Cavuoti et al. 2017). However, for X-ray AGN only SED
fitting techniques have been used (Salvato et al. 2009; Hsu et al.
2014). AGN SEDs though are more complicated than galaxies’
SEDs due to e.g. contamination from the host galaxy, intrinsic
obscuration, variability and dominance of different components
in different spectral bands. Thus, photo-z for AGN via SED fit-
ting is difficult. On the other hand, machine learning methods re-
quire large spectroscopic, training samples to perform well and
X-ray datasets suitable to be used as training sets are sparse.
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In this work we use X-ray sources detected in the XMM-
XXL survey (Liu et al. 2016) to train, for the first time, a machine
learning algorithm (TPZ; Carrasco Kind & Brunner 2013) to es-
timate photometric redshifts for X-ray AGN in the X-ATLAS
field. Our goal is to use these photoz estimations in a future pa-
per, to estimate the Star Formation Rate (SFR) and stellar mass
of these sources and study the connection between the AGN ac-
tivity and the environment of their host galaxy. In this paper, we
will check the accuracy of the photo-z estimations. The structure
of the paper is as follows: In Section 2 we describe the X-ray
sources for which we estimate photo-z, in Section 3 we describe
briefly the TPZ algorithm and provide information for the train-
ing sample. The results are presented in Section 4 while in Sec-
tion 5 we discuss the and summarize the main conclusions of
this work.

2. The X-ray Sample

The Herschel Terahertz Large Area survey (H-ATLAS) is the
largest Open Time Key Project carried out with the Herschel
Space Observatory (Eales et al. 2010), covering an area of
550 deg2 in five far-infrared and sub-mm bands (100, 160, 250,
350 and 500 µm). 16 deg2 have been presented in the Science
Demonstration Phase (SDP) catalogue (Rigby et al. 2011) and lie
within one of the regions observed by the Galaxy And Mass As-
sembly (GAMA) survey (Driver et al. 2011; Baldry et al. 2010).
XMM-Newton observed 7.1 deg2 with a total exposure time of
336ks (in the MOS1 camera) within the H-ATLAS SDP area,
making the XMM-ATLAS one of the largest contiguous areas
of the sky with both XMM-Newton and Herschel coverage. The
catalogue contains 1816 unique sources (Ranalli et al. 2015).

To obtain optical, mid-IR and far-infrared photometry for the
XMM-ATLAS sources we cross-match the X-ray catalogue with
the SDSS-DR13 (Albareti et al. 2015), the WISE (Wright et al.
2010) and the VISTA-VIKING catalogues (Emerson et al. 2006;
Dalton et al. 2006). The source matching was performed us-
ing the ARCHES cross-correlation tool xmatch, which matches
symmetrically an arbitrary number of catalogues providing a
Bayesian probability of association or non-association (Pineau
2016). xmatch associates to each X-ray source one or more tu-
ples including possible counterparts in VISTA and/or WISE,
with the corresponding probability. If a given X-ray source has
more than one associate tuple, we select those with probabil-
ity >0.68 and, among those, those included in the most cata-
logues, and finally, those with the highest probability. The cross-
match revealed 1031 sources with at least optical photometry.
Using the association probabilities derived by xmatch, less than
10% of the counterparts in our catalogue are missmatches (≈ 85
sources). 848 out of the 1031 sources have mid-infrared counter-
parts while 589 have also near-infrared (NIR) counterparts (Ta-
ble 1). Out of the 1031 sources, 174 have spectroscopic redshifts
from either the SDSS or the GAMA surveys.

3. Analysis

3.1. Methodology

For the estimation of the photometric redshifts for the X-ray
AGN in the ATLAS field we used the publicly available al-
gorithm named TPZ (Trees for Photo-z). The technique is de-
scribed in detail in Kind & Brunner 2013. In brief, TPZ is a par-
allel, machine learning algorithm that uses prediction trees and
random forest techniques to generate photometric redshift Prob-
ability Density Functions (PDFs), by incorporating into the cal-

Table 1. The number of X-ATLAS X-ray AGN divided based on their
available photometry and optical morphology. In the parentheses we
quote the number of sources with available spectroscopic redshift from
the SDSS and GAMA surveys.

Available photometry Total number of Point-like Extended
sources sources sources

SDSS 1031 (174) 576(119) 455 (55)
SDSS+WISE 603 (124) 343 (87) 260 (37)

SDSS+WISE+NIR 423 (92) 249 (67) 174 (25)
SDSS+NIR 653 (122) 380 (86) 273 (36)
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Fig. 1. The redshift distribution of the 5,157 sources used to train the
TPZ algorithm (black, solid line). The dashed and dotted lines, present
the redshift distribution when we split the training sources into extended
and point-like, based on their optical classification.

culation measurement errors while also dealing efficiently with
missing values in the data.

Random forest is an ensemble learning method for classifi-
cation, regression and other tasks that generates prediction trees
and then combines their predictions together. Prediction trees are
built by asking questions that split the data until a stopping cri-
terion is met and that creates a terminal leaf. The leaf contains a
subsample of the data with similar properties and by applying a
model within the leaf a prediction is made.

TPZ is an empirical technique and therefore requires a
dataset with spectroscopically measured redshifts to train the al-
gorithm before it is applied to our photometric X-ray sample.
The spectroscopic, training sample we used in our analysis is
described in the following Section.

3.2. Training Sample

The X-ray catalogue we use to train the TPZ algorithm comes
from the XXM-XXL survey. XMM-XXL covers a total of about
50 deg2 with an exposure time of about 10 ks per XMM pointing
(Liu et al. 2016). 8,445 X-ray sources are detected in the north
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Fig. 2. Pointlike sources. Left: Attributes importance as a function of redshift. Right: The RMS importance factor as a function of the attributes
computed by using the bias and its scatter.

Fig. 3. Same measurements presented in Fig. 2 but for extended sources.

region (XXL-N) that extends to about 25 deg2. 5,294 of these
sources have optical (SDSS) photometry. Reliable spectroscopy
from SDSS-III/BOSS is available for 2,512 AGN (Menzel et al.
2016). To increase the size of our training sample we also include
sources from the XWAS (XMM-Newton Wide Angle Survey;
Esquej et al. 2013), XBS (Della Ceca et al. 2004), XMS (Barcons
et al. 2007) and COSMOS (Brusa et al. 2010) surveys. We also
add ∼ 1, 500 optically selected X-ray AGN with spectroscopic
redshifts from the SDSS-DR13 dataset, by cross-matching the
3XMM-DR5 catalogue with SDSS, UKIDSS (Hambly et al.
2008; Irwin 2008), 2MASS (Skrutskie et al. 2006) and WISE.
This increases the total number of sources in our training sample
to 5,157 (Table 2). Testing the performance of TPZ (see next
Section) with and without the optically selected X-ray AGN
revealed that the inclusion of these extra sources marginally
but systematically improves the training process of the TPZ
code. Specifically, the outliers percentage (see next Section) goes
down by 2-3% in all cases. Therefore, the results we present next
are estimated using the training sample described above.

Additionally to the photometric bands of SDSS (u, g, r, i, z)
we also include mid-IR (W1, W2) and near-IR (J, H, K) bands
in the training process of TPZ to check whether its performance
improves. For that purpose we cross-match the 5,157 sources

with the WISE catalogue and near-IR catalogues, i.e. VISTA,
UKIDSS or 2MASS. The cross-match was performed using the
xmatch cross-correlation tool and following the same analysis
described in the previous Section for the ATLAS sources. The
number of sources we obtained and the available photometry is
presented in Table 2. Although TPZ can infer missing photome-
try, in our validation tests and the estimation of the photometric
redshifts of the X-ATLAS sources, only the available photomet-
ric bands are used for each subsample.

The redshift distribution of the training set is presented in
Fig. 1.

3.3. Checking the performance of TPZ using the training set

To check the performance of TPZ in estimating accurate photo-
metric redshifts, we split our training set into two subsamples.
One is used to train the algorithm and the other subsample is
used as a test case for which we estimate photometric sources.
This is an ideal scenario since both subsamples share the same
region of the parameter space and the same quality of (spectro-
scopic) data, i.e. the same distribution in redshift and magnitude
as well as the same photometric errors. To account for the fainter
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Fig. 4. Left: The u-g vs. g-r colour distribution of the training sample (black circles) and the X-ATLAS sources (blue triangles). Right: The z-W1
vs. J-H colour distribution of the training sample (black circles) and the X-ATLAS sources (blue triangles). The fraction of the X-ATLAS sources
that is well covered, by the training set, is different for different colour combinations. This is quantified in Table 4.
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Fig. 5. The performance of TPZ using the ten available photometric bands (SDSS+WISE+near IR). The training sample has been split into train
and test files to compare the estimated photometric redshifts with the spectroscopic redshifts of the sources. The dashed lines correspond to
∆znorm = ±0.15. Based on our analysis, the number of outliers is η = 9% and η = 13%, for the extended and pointlike sources, respectively. The
normalized absolute median deviation is σnmad ≈ 0.04 − 0.05.

magnitudes of our photometric X-ATLAS sources compared to
the spectroscopic, training sample and facilitate a more accurate
check of the TPZ performance, in this test we shall train TPZ us-
ing colours instead of magnitudes. Fig. 4 presents two examples
of the colour distribution of the training sources (black circles).

The accuracy of the photometric redshifts estimated by TPZ
is quantified by two widely used statistical parameters, the nor-
malized absolute median deviation, σnmad, and the percentage of
outliers, η. σnmad is defined as:
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Fig. 6. Examples of PDFs produced by TPZ, during the validation process. The top panels present results for extended sources and the bottom
panels for pointlike sources. On the left panels, the estimated photoz (dotted line) is in agreement with the spectroscopic redshift (solid line) of
the source. On the right panels, the estimated photoz differs significantly compared to the spectroscopic redshift. These measurements are also
characterized by low confidence level of the photometric redshift.

∆(znorm) =
zspec − zphot

1 + zspec
,

MAD(∆(znorm)) = Median(|∆(znorm)|),

σnmad = 1.4826 × MAD(∆(znorm)). (1)

The percentage of outliers, η, is defined as:

η =
100
N
× (Number of sources with |∆(znorm)| > 0.15) (2)

Since the near-IR data come from different surveys, the train-
ing sample is used to calibrate any possible dependencies on
the different filters used, i.e. differences between the K filter on
UKIDSS and the Ks filter on VISTA and 2MASS. Our tests re-
veal that there are no differences whether we ignore the differ-
ent filters or we scale K magnitudes to Ks. For example using
the SDSS+NIR sample, for pointlike and extended sources, the
percentage of outliers differs by < ±0.8% and the difference in
σnmad is negligible. Therefore, we ignore this difference in filters
in our analysis.

Our initial tests reveal that the performance of the TPZ al-
gorithm in estimating photometric redshifts improves when we
split the sources based on their morphology. Using the SDSS
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colour distribution of the training sample (black circles) and the outliers (blue triangles).

Fig. 8. The distribution of zcon f for the extended (dashed line) and the
pointlike (dotted line) sources in our training sample.

photometric bands and estimating photometric redshifts with-
out dividing the sources into pointlike and extended we get,
σnmad = 0.12 and η = 0.35%. These numbers are higher than
those derived when splitting the sources based on their optical
morphology (see Table 3). We also try to use the morphology as
one of the features used to train the algorithm. Our tests reveal
that there is no improvement in the accuracy of the photoz esti-
mations. For example, using 10 photometric bands,σnmad = 0.05
and η = 11.8%. These estimations are in-between the values

Fig. 9. i-z vs. g-i colour space diagram. Black dots present the sources
in our training sample. The black solid line defines the region of the
colour space that contains 90% of the training sources as estimated by
the KDE test. Green dots are the sources from the X-ATLAS sample
inside the 90% region and red crosses present the remaining of the X-
ATLAS sources.

obtained when the sources are split based on their morphology
(Table 3). We therefore split the training sources into point-like
and extended, using their SDSS classification. The number of
sources in each subsample is shown in Table 2. Their redshift
distribution is presented in Fig. 1. Based on the two distributions
we can reach redshifts up to 3.5 and 2.5 for point-like and ex-
tended sources, respectively.

Table 3 presents the values for the various parameters of TPZ
used to estimate photometric redshifts for each subsample. Nran-
dom is the number of random realizations that TPZ performs,
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Fig. 10. The redshift distribution of the 933 X-ATLAS sources taking
into account the full PDF of each source. Photoz are estimated using the
TPZ algorithm.

NTrees is the number of trees used and Natt the number of at-
tributes for TPZ. The number of the bins used is 50 in the case
of extended sources and 70 for the pointlike sources. For the es-
timation of the PDFs and the confidence level of the estimated
photometric redshifts (see Carrasco Kind & Brunner 2013) the
rms factor is set to 0.06. The same values for each parameter are
used for the estimation of the photoz for the 1,031 X-ray sources
in the ATLAS field (next Section).

Fig. 2 presents the importance of some of the attributes used
in the training process of the TPZ algorithm. The left panel
presents the importance of the attribute as a function of redshift
for the pointlike sources when ten photometric bands are avail-
able. A factor of one in the importance implies that the attribute
acts as a random variable (for more details see Section 4.1.1. in
Carrasco Kind & Brunner 2013). The right panel presents the
RMS importance factor as a function of the attributes computed
by using the bias, defined as ∆z = zspec − zphot, and its scatter.
Fig. 3 shows the same measurements for the extended sources.

The left panels of Figures 2 and 3 show that the impor-
tance of each attribute is different at different redshifts. In the
case of pointlike sources, the z−W1 colour is the most impor-
tant attribute up to redshift 2.5, but its importance significantly
drops at z = 3. Similarly, the importance of the h-k colour in the
case of extended sources significantly drops at z > 1.4. More-
over, same colours have different importance for pointlike and
extended sources, as can be more clearly seen in the right panels
of the two Figures. For instance, the z-W1 colour is the most im-
portant attribute for the pointlike sources but the least important
one in the case of extended sources. Therefore, the importance
of the colours used to estimate photometric redshifts for X-ray
sources strongly depends on the morphology of the source and
the redshift range of interest.

The results of our measurements are presented in Table 3.
Using only optical photometry (SDSS) the number of outliers is

Table 2. The number of sources used to train TPZ, with the correspond-
ing available photometry. The second column presents the total number
of the sources, while the third and fourth columns show the numbers
of sources divided into point-like and extended. In the parentheses we
quote the number of the sources used to train TPZ during the validation
process (see text for more details).

Available photometry Total number of Point-like Extended
sources sources sources

SDSS 5157 2703 (1900) 2454 (1200)
SDSS+WISE 4781 2473 (1500) 2308 (1400)

SDSS+WISE+NIR 3212 1613 (1000) 1599 (1000)
SDSS+NIR 3313 1679 (1000) 1634 (1100)

high, especially in the case of point-like sources. Adding mid-
IR colours (WISE) the results improve significantly while TPZ
performs best when we also include near-IR magnitudes in the
training process of the algorithm. Fig. 5 compares the estimated
photometric redshifts with the available spectroscopic redshifts
of the sources. Fig. 6 presents examples of photometric redshift
PDFs produced by TPZ.

The number of outliers drops down to 9-14% when 10 bands
are used for the photoz estimation (Table 3). Although this num-
ber is significantly lower compared to the outliers percentage
we get using fewer number of photometric bands, there is a
non-negligible number of outliers even among our best photoz
estimations. Fig. 7 presents the colour space occupied by the
training sample (black circles) for different colour combinations.
Outliers (blue triangles) lie within the boundaries of the training
set. Therefore, their existence cannot be attributed to extrapola-
tion in colour space that TPZ may be required to perform. Al-
though the cause of these outliers is uncertain, their percentage
can be significantly reduced if a cut is applied in the confidence
level, zcon f (Carrasco Kind & Brunner 2013), of the photoz. For
example, for zcon f > 0.6, η = 4.5% in the case of pointlike
sources. The percentage goes further down (η = 2.4%) when
we consider only photoz estimated using 10 photometric bands.
Applying a zcon f > 0.5 cut for the extended sources the corre-
sponding numbers are, η = 4.0% and η = 1.2%. Fig. 8 presents
the distribution of zcon f for pointlike and extended sources.

Variability of AGN can impact the accuracy of the estimated
photometric redshifts (Simm et al. 2015). This is not an issue
for the optical bands of SDSS we use, since all bands have been
observed simultaneously. Variability is also minimal in the mid-
IR photometric bands. Regarding the near-IR bands, though, an
estimation of the variable sources in our sample cannot be made.
We would expect most of these sources to be excluded when
a zcon f cut is applied, as discussed above, but a flag cannot be
assigned to indicate these sources in the full catalogue.

4. Results

Following the results of the tests during the validation process
(see previous Section), we split the 1,031 X-ATLAS X-ray AGN
into point-like and extended sources, using their SDSS classi-
fication. The number of sources divided based on their optical
morphology as well as the available photometry is presented in
Table 1.

Machine learning methods, such as TPZ, are known to per-
form poorly when training set coverage is not available and ex-
trapolation must be performed (Beck et al. 2017). Fig. 4 com-
pares the colour distribution of the X-ATLAS AGN (blue tri-

Article number, page 7 of 10



A&A proofs: manuscript no. atlas_tpz_astroph

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

SDSS

SDSS+WISE

SDSS+NIR

SDSS+WISE+NIR

EXTENDED

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

SDSS
SDSS+WISE
SDSS+NIR
SDSS+WISE+NIR

POINTLIKE

Fig. 11. Comparison of the photometric redshifts estimated using TPZ with the spectroscopic redshifts from the SDSS and GAMA surveys for the
174 out of the 933 sources in the ATLAS field. The left panel shows the comparison for 55 extended sources and the right panel for 119 point-like
sources. The median error of the photoz varies from 0.19 to 0.26 and the median confidence level from 0.36 to 0.49, depending on the morphology
of the source and the available photometric bands (Table 5). A significant fraction of outliers exist in the case of pointlike source, even when seven
or even 10 photometric bands are used. This number can be greatly reduced if a cut is applied on the confidence level of the photometric redshift,
as discussed in the text (zcon f > 0.6).

Table 3. The performance of the TPZ algorithm, estimated by splitting our spectroscopic sample (see Section 3.2) into train and test files. The
accuracy of the photometric redshifts is quantified by the estimation of the normalized absolute median deviation, σnmad and the percentage of
outliers, η. The median error of the photometric redshift for each subsample is shown. The values of the TPZ parameters used for each subsample
is also presented.

Sample Point-like Extended TPZ parameters
σnmad / η (%) <error> σnmad / η (%) <error> Nrandom NTrees Natt

SDSS 0.08 / 27.0 0.33 0.06 / 18.0 0.21 6 8 7
SDSS+WISE 0.06 / 17.4 0.25 0.06 / 13.0 0.20 8 10 8

SDSS+WISE+NIR 0.05 / 13.7 0.23 0.04 / 9.0 0.18 6 8 12
SDSS+NIR 0.06 / 20.0 0.27 0.05 / 11.5 0.19 8 10 10

angles) with that of the training sample (black circles). In both
examples, the coverage of the training set seems sufficient to
properly train TPZ for the estimation of the photometric redshift
of the X-ATLAS sources. To quantify the differences among
the colours between the training and the X-ATLAS samples we
perform a Kernel Density Estimation (KDE) test. Using KDE
we define the region in colour space that contains 90% of the
training sample. Then we estimate the fraction of the X-ATLAS
sources that are contained in that region, i.e. these sources are
well covered by the training sample. This is illustrated in Fig. 9
for the g − i vs r − z colours. Table 4 presents the fraction of X-
ATLAS sample that is well covered in all possible combinations
of colours as well as in at least one colour-colour combination.

TPZ estimates photoz for 933 out of the 1,031 sources. Most
of the remaining 98 sources have missing photometry, i.e., only
SDSS bands are available and therefore the algorithm cannot be
properly trained to give a photometric redshift estimation. The
distribution of the photometric redshifts for the 933 X-ATLAS

X-ray sources, estimated by TPZ and taking into account the
full PDF of each sources, is shown in Fig. 10. Out of the 933
AGN, 174 have available spectroscopic redshifts from the SDSS
and GAMA surveys. In Fig. 11 we compare our photometric red-
shifts, estimated using TPZ with the available spectroscopic red-
shifts. Table 5 presents the median error and the median con-
fidence level, zcon f , of the photometric redshifts, calculated by
TPZ as a function of the available photometric bands. The full
catalogue with the estimated photometric redshifts is available
online1.

To check how many of the X-ATLAS sources are AGN
(log LX > 42 erg s−1) we use the X-ray fluxes provided by the
XMM-ATLAS catalogue (Ranalli et al. 2015) and the estimated
photometric redshifts to calculate the X-ray luminosities. This
information is available for 894 sources. Our calculations show
that 883 of the sources have log LX > 42 erg s−1.

1 http://xraygroup.astro.noa.gr/atlas/atlas-photoz-online.dat
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Table 4. The fraction of X-ATLAS sample that is well covered in all possible combinations of colours as well as in at least one colour-colour
combination. An X-ATLAS source is considered well covered by the training set, in a colour-colour combination, when it lies in a region of the
colour space that contains 90% of the training sources.

Available photometry Fraction of sources well-covered Fraction of sources well-covered
in all colour combinations in at least one colour-colour combination

Extended/Pointlike Extended/Pointlike
SDSS 51% / 56% 98% / 91%

SDSS+WISE 40% / 44% 99% / 94%
SDSS+WISE+NIR 25% / 35% 100% / 100%

SDSS+NIR 37% / 46% 99% / 99%
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Fig. 12. The redshift distribution of the 3,515 sources with ANNz pho-
toz estimation in the X-ATLAS field (solid line) and the N(z) using TPZ
(normalized to the number of sources with ANNz estimation), of the 65
sources that also belong to our X-ray AGN sample. The redshift distri-
bution of the photoz estimated by ANNz peaks at low redshifts (z ∼ 0.3)
and there is a very small number of sources with z > 1 (solid line). This
is expected since ANNz has been trained to estimate photometric red-
shifts for galaxies. The N(z) estimated using TPZ has been specifically
trained to estimate photoz for X-ray sources and presents a second peak
at z ∼ 1.5 (dotted line).

5. Summary and Discussion

In this paper, we present a catalogue with photometric redshift
estimations for 933 X-ray AGN in the ATLAS field. For the first
time, we have used the largest available X-ray sample to train a
machine learning technique (TPZ) and estimate photo-z for X-
ray sources. Our analysis shows that our redshift estimations are
accurate when optical photometry is combined with mid-IR pho-
tometry in the training process of the algorithm. Using additional
photometric bands (near-IR) further improves the precision of
photometric redshifts. Our photo-z estimations have a normal-
ized absolute median deviation, σnmad ≈0.06 and the percent-
age of outliers is, η=10-14%, depending on whether the sources
are extended or point-like. These numbers significantly improve
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Fig. 13. Comparison of our photometric redshifts estimated using TPZ
and those estimated using ANNz (Smith et al. 2011) for the 65 common
sources with our X-ATLAS X-ray AGN catalogue and the submillime-
tre catalogue described in Valiante et al. 2016 and Bourne et al. 2016.
Most of the discrepancy between the two photoz estimations is located
in the upper left part of the plot, i.e., ANNz computes lower redshift
values compared to our TPZ measurements. Most of this difference is
likely due to the different training sets used in the two methods. The
training sample of ANNz is constructed to better suit their test sam-
ple, the vast majority of which consists of galaxies. Our training sample
(Section 3.2) consists of X-ray AGN (see text for more details).

when a cut in the confidence level of the photometric redshift is
applied (zcon f > 0.5 − 0.6.).

Valiante et al. (2016) and Bourne et al. (2016) presented a
catalogue of 120,230 sources with identification of optical coun-
terparts to submillimetre sources in Data Release 1 (DR1) of
the H-ATLAS sample. The sources are located in three fields
on the celestial equator, covering a total area of 161.6 deg2, pre-
viously observed in the GAMA spectroscopic survey. The cat-
alogue contains photometric redshifts (Smith et al. 2011) mea-
sured from the SDSS ugriz and UKIDSS YJHK photometry us-
ing the neural network technique of ANNz (Collister & Lahav
2004). Photometric redshifts have been estimated using a train-
ing sample constructed by spectroscopic redshifts from GAMA
I, SDSS DR7, 2SLAQ (Cannon et al. 2006), AEGIS (Davis et al.
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Table 5. The median error of the photometric redshifts and their me-
dian confidence level, estimated by TPZ, for each subsample of the X-
ATLAS dataset, based on the available photometry

Available photometry <zcon f > <error>

Extended/Pointlike Extended/Pointlike
SDSS 0.44 / 0.36 0.21 / 0.26

SDSS+WISE 0.44 / 0.46 0.20 / 0.25
SDSS+WISE+NIR 0.49 / 0.48 0.19 / 0.24

SDSS+NIR 0.48 / 0.47 0.19 / 0.26

2007) and zCOSMOS (Lilly et al. 2009) covering redshifts z < 1.
5500 of these sources lie in the X-ATLAS region and 3,515
have a photometric redshift estimation using ANNz. 65 of these
sources are common between the two samples. Fig. 12 presents
the redshift distribution of the 3,515 sources (solid line) and that
of the 65 common sources, based on our TPZ photoz estimations
(dashed line). The vast majority of the ANNz photoz estimations
are at z < 1 due to the galaxy training sample used for ANNz. In
Fig. 13 we compare our photometric redshift estimations using
TPZ with those using the ANNz method. Most of the discrep-
ancy between the two photoz estimations is located in the upper
left part of the plot, i.e., ANNz computes lower redshift values
compared to our TPZ measurements. Most of this difference is
likely due to the different training sets used in the two meth-
ods. The training sample of ANNz is constructed to better suit
their test sample, the vast majority of which consists of galaxies.
Our training sample (Section 3.2) consists of X-ray AGN and
extends to higher redshifts (up to z∼3.5; see Fig. 1). Our analy-
sis has shown (Figures 2, 3, 9 and Table 4), that the coverage of
our training set in feature space , i.e., colours, is also sufficient
at high redshifts (z > 1). The results of this comparison is not
an indication that ANNz generally performs poorer compared to
TPZ, but that for the specific X-ray sources our X-ray training
set is probably better suited.

Large-scale structure studies (e.g. weak lensing, gravita-
tional waves, clustering) require accurate redshifts in their analy-
sis. Georgakakis et al. (2014) examined how the accuracy of pho-
tometric redshifts affects the estimation of the correlation func-
tion in clustering measurements. They concluded that a σ ∼ 0.04
(standard deviation of the photoz) is required in photo-z estima-
tions to be used for the calculation of the AGN correlation func-
tion in clustering studies. This accuracy is challenging to obtain,
albeit, Georgakakis et al. argue that the clustering signal can be
recovered even if the normalized absolute median deviation is
σ = 0.08, when the AGN/galaxy cross-correlation function is
measured and the galaxy sample has very accurate photomet-
ric redshifts (σ ≈ 0.01). Their analysis takes into consideration
the error of the photometric redshifts but does not account for
outliers. Even our best photometric redshift measurements (ex-
tended sources with ten photometric bands available) have a con-
siderable percentage of outliers (∼ 9-10%). Our preliminary re-
sults (Mountrichas et al., in prep.) indicate that the clustering
signal can be recovered using photometric redshifts derived by
TPZ, when a cut is applied on the confidence level of the photo-
metric redshift.

The 3XMM catalogue is the largest X-ray cat-
alogue available, containing about 470,000 unique
sources covering a total area of 1,000 deg2 on the sky.
XMMFITCAT-Z (http://xraygroup.astro.noa.gr/Webpage-
prodec/xmmfitcatz.html; Corral et al. 2015) is a spectral fit

database for 124,000 sources with good photon statistics in
the 3XMM. The potential of these catalogues will increase
significantly with the addition of the distance information for
their sources. We shall apply the analysis presented in this work
on the 3XMM catalogue, to estimate photometric redshifts for
all the X-ray sources with, at least, optical photometry available.
In the 3XMM-DR5 catalogue, 42,697 sources have available
SDSS photometry and 22,619 have also WISE counterparts.
3XMM-DR6 and usage of PanSTARRS in the southern sky will
increase the numbers of available X-ray sources. The resulting
X-ray catalogue will exceed, by an order of magnitude, any
other X-ray catalogue with available redshift information, up to
date.
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