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ABSTRACT  

ATHENA is the second large mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 
2028 towards the L2 orbit. The mission addresses the science theme “The Hot and Energetic
Universe”, by coupling a high-performance X-ray Telescope with two complementary focal-plane
instruments. One of these, the X-ray Integral Field Unit (X-IFU) is a TES based kilo-pixel array,
providing spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV.  
The background for this kind of detectors accounts for several components: the diffuse Cosmic X-
ray Background, the low energy particles (< ~100 keV) focalized by the mirrors and reaching the 
detector from inside the field of view, and the high energy particles (> ~100 MeV) crossing the 
spacecraft and reaching the focal plane from every direction. In particular, these high energy 
particles lose energy in the materials they cross, creating secondaries along their path that can induce 
an additional background component. 
Each one of these components is under study of a team dedicated to the background issues regarding 
the X-IFU, with the aim to reduce their impact on the instrumental performances. This task is 
particularly challenging, given the lack of data on the background of X-ray detectors in L2, the 
uncertainties on the particle environment to be expected in such orbit, and the reliability of the 
models used in the Monte Carlo background computations. As a consequence, the activities 
addressed by the group range from the reanalysis of the data of previous missions like XMM-
Newton, to the characterization of the L2 environment by data analysis of the particle monitors 
onboard of satellites present in the Earth magnetotail, to the characterization of solar events and their 
occurrence, and to the validation of the physical models involved in the Monte Carlo simulations. 
All these activities will allow to develop a set of reliable simulations to predict, analyze and find 
effective solutions to reduce the particle background experienced by the X-IFU, ultimately satisfying 
the scientific requirement that enables the science of ATHENA. 
While the activities are still ongoing, we present here some preliminary results already obtained by 
the group. The L2 environment characterization activities, and the analysis and validation of the 
physical processes involved in the Monte Carlo simulations are the core of an ESA activity named 
AREMBES (Athena Radiation Environment Models and Effects), for which the work presented here
represents a starting point.  
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1. INTRODUCTION  
 

ATHENA1 is an observatory class mission, whose launch is foreseen in 2028, that will be placed in orbit around the 
second Lagrangian point of the Sun-Earth system in a large halo orbit. The mission will address two key questions: how 
does ordinary matter assemble into the large scale structures that we see today, and how do black holes grow and shape 
the Universe. The mission includes two focal plane detectors: a Wide Field Imager2 (WFI), and the one we will deal with 
in this paper: the X-ray Integral Field Unit3 (X-IFU). 

X-IFU is an array of 3840 Transition Edge Sensors (TES) 249 μm pitch, composed of Mo/Au sensors and 1-2.5 μm Au 
and 3-6 μm Bi absorbers that operates at cryogenic temperatures to achieve the high spectral resolution of 2.5 eV at 6 
keV. The absorbers will be arranged in a hexagonal shape, covering the 5’ equivalent diameter Field of View (FoV). 

The particle background experienced by an X-ray instrument in orbit is dominant over the diffuse component above 2-3 
keV4. In stationary conditions this background is induced by two families of particles: the high energy cosmic rays 
(E>150 MeV), which have sufficient energy to cross the spacecraft and reach the detector from every direction, and the 
low energy particles (E< few 100s keV, mostly of solar origin), that are concentrated by the optics and reach the detector 
from inside its Field of View. 

Since no X-ray mission has ever flown in the L2 environment we estimate the background induced by both components 
using Monte Carlo simulations. In this paper we describe the state of the art of the L2 environment characterization and 
the particle background simulations for the X-IFU instrument. 

 

1.1 Background induced by high energy particles  

High energy particles will cross the spacecraft and reach the detector from every direction, generating secondary 
particles along their way that can induce further background. This background component is reduced with the use of the 
CryoAC detector and of a Kapton shield for secondary electrons, and is strongly influenced by materials and masses in 
the detector proximity. We estimate its contribution with Geant4 simulations, reproducing the L2 environment and the 
ATHENA mass model (Figure 1).  

 

              
Figure 1. The fluxes of cosmic rays expected in L2 for different years in a solar cycle (left), and the preliminary 
mass model of the cryostat used in the simulations (right). 
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The first estimates were obtained using a simplified mass model for the Cryostat and the Focal Plane Assembly (FPA), 
due to the lack of information suffered in early stages of this work. However, with the mission progressing new 
information became available and we were able to upgrade the FPA mass model (Figure 2) and the Geant4 version, from 
9.4 to 10.1. At the same time a complete revision of the Geant4 settings was performed. In the new configuration the 
background level obtained is 10ିଶ	ܿݏݐ	ܿ݉ିଶ	ିݏଵ in the 2-12 keV energy band (Figure 3). 

 
Figure 2. The preliminary cryostat mass model used to evaluate background; inside the yellow box the old 
model of FPA (left). The new FPA mass model used in the current simulations (right). 

 

 
Figure 3. A detail of the new FPA: in blue the Niobium shield, in grey the 250 mm thick Kapton passive 
electron shield (left). On the right, the background expected in this configuration: the black line is the total (1 
keV bin), red crosses represents the electrons contribution (1 keV bin), and the blue crosses the photons 
contribution (0.1 keV bin).  

 

This background level was reached using the CryoAC detector, a secondary electron shield (Kapton, 250 μm thick) in 
the configuration shown in Figure 3, and pattern/energy selection criteria for the background events. As it can be seen 
from Figure 3 the main components of the background are secondary electrons (~75%, mostly coming from the surfaces 
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directly seen by the detector), and secondary photons (~20%, half of which in the form of fluorescence lines from the 
niobium shield). 

Starting from this result we addressed the two major components of the background: the secondary photons and 
electrons. 

 

Secondary photons:  

Roughly half of the secondary photons component comes from 16 and 18 keV fluorescence lines produced inside the Nb 
shield, when these photons impact the detector they induce the emission of 10.8 keV and 13 keV fluorescence photons 
from the Bi absorber. The 10.8 keV and 13 keV photons escape, leaving inside the detector a fixed amount of energy in 
the form of escape peaks. The remaining contribution is given by low energy photons that are completely absorbed and 
by high energy photons that Compton scatter in the detector, leaving a small fraction of their energy. 

To block these 16 and 18 keV photons, we tested several configurations of double/tri-layered passive shieldings (see 
table 1).  

Table 1.  Background levels expected with different passive shielding configurations. The last line reports the presence of 
fluorescence lines or Escape Peaks in the spectrum 

Shield   
250 um 
Kapton 

250 um 
Kapton 

+  
10 um W 

250 um 
Kapton + 

20 um Bi + 
10 um W 

250 um 
Kapton + 

250 um SiC 
+ 10 um W 

250 um 
Kapton + 

300 um Si3N4 
+ 10 um W 

10 um W 
+ 300 um 

Si3N4 

250 um 
Kapton + 
1.3 mm 
Si3N4 

250 um 
Kapton 

+ 
20 um Bi 

250 um 
Kapton + 
1 um SiC 

Total [x 10
-3

] 

cts/cm
2
/s/keV 

10 7.6 8.8 8.4 8.1 7.8 7.4 8 7.3 

gamma [x 10
-3

] 

cts/cm
2
/s/keV 

2 1.7 1.7 1.4 1.3 1 1.2 1.9 1.4 

Lines? E.P. 
W: 

8.4 keV 
9.6 keV 

Bi: 
10.8 keV No No 

Si: 
1.72 
keV 

No 
Bi: 

10.8 
keV 

E.P. 
5.7 keV 

 

Summarizing the results obtained, we found that: 

• A few μm of W placed betwen the Nb and the Kapton (a Kapton-W bilayer shield) efficently blocks Nb lines, 
but the Tungsten produces further fluorescences inside the instrument energy band. 

• Inserting a further layer of Bi to block these W fluorescences (a Kapton-Bi-W tri-layer shield) we eliminate the 
W lines, but we get L fluorescences from Bi in turn; 

– Substituting Bi with SiC or Si3N4 we get rid of all fluorescences 

– Taking out Kapton (last surface: Si3N4) we have no fluorescences above 2 keV and a low background. 
The 1.72 keV line from Si can however be a hindrance for the observation of AGNs at redshift ~2-3  

• Other bi-layers tested: Kapton-Bi, kapton-Si3N4, Kapton-SiC 

– The best result was obtained using a bilayer made of 250 μm of Kapton and 1.3 mm of Si3N4, roughly 
halving the photon component and reducing the total background by ~25% 

– The Kapton-Bi: bilayer also brought a ~20% background reduction. Furthermore, half of the photon 
background is concentrated in the Bi line at 10.8 keV, near the edge of the sensitivity band of the 
instrument. This solution is remarkable also since we already know it is feasible to cool down the Bi to 
cryogenic temperatures. 

– The Kapton-SiC solution brought results similar to the previous 2, but with an escape peak at 5.7 keV 

bkg 
2-12 keV 
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Secondary electrons 

Secondary electrons constitute the greatest contribution to the unrejected background. They have energies up to ~1 MeV 
and impact the detector surface with skew trajectories, backscattering and depositing only a fraction of their energy, not 
reaching the CryoAC detector.  

In Figure 4 is shown the cumulative distribution of the spectrum of electrons that impact the detector depositing energies 
inside its sensitivity band. It can be seen that roughly 40% of the backscattered electrons impact the detector with E>100 
keV and up to few MeV.  

 
Figure 4. Cumulative distribution of the energies of secondary electrons that backscatter on the detector surface 
depositing energy inside its sensitivity band. 

 

These electrons are difficult to block due to their high energies. We tested two approaches: 

- substituting the lowest section of the Kapton shield with a higher density material like Tungsten, in the form of a 1 
cm high ring with 1 mm thickness. With this composite shield we increase the stopping power for high energy 
electrons impacting the detector with small incidence angles. Tungsten however has a higher secondary electron 
yield, so it is not guaranteed that this approach would bring appreciable background reduction. 

- inserting an electron filter just above the detector, to induce backscattering there and shield the detector from these 
energy releases. The filter thickness should be high enough to block electrons, providing at the same time 
acceptable X-ray transmission. 

 

Composite shield 

The background obtained with this configuration is shown in Figure 5, together with the background obtained with the 
“real” shield. The integrated background values for the main components are shown separately in the table. As it can be 
seen from the table this shield configuration allowed a background reduction of ~20%, mostly on the electron component 
that was reduced by ~30%. The photon component stayed constant, and exhibited an emission line at 8.4 keV from the 
Tungsten shield that accounted for 5 x 10-4 cts/cm2/s/keV in the 2-12 keV band. 
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       Shield Real shield 

250 um 
Kapton 

Composite shield 
250 um Kapton + 

1 mm W 

Total [x 10
-3

] 
cts/cm

2
/s/keV 

10 ± 0.5 8.1 ± 0.6 

photons [x 10
-3

] 
cts/cm

2
/s/keV 

2 ± 0.2 2.2 ± 0.3 

e- [x 10
-3

] 
cts/cm

2
/s/keV 

7.5 ± 0.5 5.4 ± 0.5 

 

Figure 5. Background foreseen in the two configurations discussed in the text: in black the background with the 
250 um Kapton shield, in red the one obtained with the composite shield. On the right a table that highlights the 
different contributions in the two configurations. 

 

 

Electron filter 

If we insert a filter just above the detector, a fraction of the secondary electrons will be backscattered there and not in the 
detector. Such filter needs to be thicker than the backscattering depth but thin enough to be transparent to X-rays.  

From the extrapolation of experimental data5 we estimate that 500 nm of Silicon should be able to block electrons up to 
~80 keV. This thickness is quite high with respect to X-ray transparency, so we investigate the dependence of the 
backscattering depth with the atomic number6 and derived some alternative configurations. In total 4 different 
configurations were tested: 

 

• 500 nm Al: this allows to block electrons up to 82 keV  

• 50 nm Au: same blocking power of 500 nm Al, higher Z 

• 90 nm Al: lower stopping power, higher X-ray transmission 

• 3 um BCB: this is to reproduce a configuration tested by the WFI team 

 

In Figure 6 is reported the X-ray transmission of such filters. We found that there is no significant reduction of the 
backscattered electrons component using Al filters, while we obtain a ~20% background reduction above 2 keV using 50 
nm Au, or 3 um BCB, however the X-ray transmission of such filters is too low to be considered for implementation. 

The current level of confidence in these results is however low, pending a validation of the backscattering process (along 
with many others) to be performed inside the AREMBES framework. 

bkg 
2-12 keV 
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Figure 6. X-ray transmission of the different electron filters analyzed. 

 

1.2 Background induced by low energy particles  

 

Past X-ray missions like XMM-Newton and Chandra experienced sudden and intense increases of the background level 
(see Figure 7). Those “flares” were totally unrelated to the background rates measured by the radiation monitors, and 
were associated to protons of energies in the few tens to few hundreds of keV concentrated by the optics towards the 
focal plane. These low energy particles limited the exploitation of the data in two significant ways: firstly by reducing 
exposure times by a non-trivial fraction (about 40-50%, see Figure 7 - right) due to flaring events; secondly by 
contaminating the remaining data with a subdominant but poorly reproducible background component induced by the 
quiescent flux of these low energy particles. 
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Figure 7. Count rates measured by EPIC/MOS during 100 Ms. Cosmic Rays are in black: they are slowly varying, 
exhibit modest spectral variations, and have high reproducibility (few %). Soft protons are in red, are highly variable 
in both spectrum and flux (left). On the right, the fraction of time the measured count rate is below a given value. 

 

In a similar way low energy particles will enter the Athena SPO mirror aperture, scatter inside the mirrors and will be 
concentrated towards the focal plane. The effect will be even more significant given the larger collection area of the 
ATHENA mirrors. This soft proton flux must be blocked or diverted to avoid excess background loading on the WFI or 
X-IFU instruments.  

The usual solution is to introduce a high magnetic field behind the rear mirror aperture, using magnets to defect the 
protons, preventing them from reaching the detectors. So far, all existing missions have used permanent magnets for this 
purpose, but feasibility studies to use superconductive magnets are under development. Typical magnetic fields involved 
are of the order of 100s G. These values are not sufficient to reflect backwards protons with E ~ keV, so it is likely that 
all the protons entering the mirrors will remain in the telescope tube. 

One possible configuration for the diverter is the following. The permanent magnets are rectangular blocks with the 
magnetic field running across the thinnest dimension, that can be arranged either radially in the azimuthal gaps between 
the modules or azimuthally in the radial gaps between the rings of modules. The magnets alone (no support structure) are 
expected to absorb 8.3% of the incoming protons7. 

The scientific requirement for the ATHENA focal plane instruments to achieve a low energy particles induced 
background <10% of the GCR induced one. This translates into a residual flux at focal plane < 0.1 × ோீܤ = 5 ×10ିଷ		ܿ݉ିଶ	ିݏଵ. 

To calculate the expected residual flux at focal plane we can break down the particles interaction with the satellite in 
different modules (see Figure 8) 

50% low  

soft proton 

contamination 
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The focalization efficiency of the ATHENA optics for soft protons has been calculated with two independent 
approaches: 

• As level-0 approximation we can assume that the protons will have the same focalization efficiency of 1 keV
photons:

Where ݂௫௫௨ሺ1	ܸ݇݁ሻ is the flux of CXB photons impacting on the detector in 	ܿ݉ିଶିݏଵܸ݇݁ିଵ andܫ௫௫௧ሺ1	ܸ݇݁ሻ is the CXB intensity outside the optics, and		ܿ݉ିଶିݏଵିݎݏଵܸ݇݁ିଵ, respectively.

• According to ray-tracing simulations on the ATHENA optics the focalization efficiency ߟ for protons is:

3 3det det

det

( ) 0.5 10 4 ~ 6.28 10  sr
4

opt

inc inc

A N n
A N I

ϑη η π
π

− −Ω
= = × → = ⋅ ×

Where Ωሺߠሻ is the solid angle of the optics, ܣ௧ is the optics area in ܿ݉ଶ, ܣௗ௧ is the detector area in ܿ݉ଶ, ݊ௗ௧ = ே
is the number of particles impacting on the detector per unit area in 		ܿ݉ିଶ, and ܫ = ேஐሺఏሻ the intensity of the

proton flux on the optics in 		ܿ݉ିଶିݎݏଵ.

In the calculations we assumed ܣௗ௧ = 2.4	ܿ݉ଶ detector area, ܣ௧ = 20000	ܿ݉ଶ, Ωሺߠሻ = 2	 ×	10ି	ݎݏ.
The angular distribution of the focused proton beam will likely be Gaussian-shaped peaked towards the center of the
FoV. The width of the distribution will depend on the proton energy. 
The two estimates differ by a factor 3, confirming the validity of the estimate provided by the Monte Carlo code. In the
following section we will use the ray-tracing outcome to estimate the flux at the focal plane.

Magnetic diverter efficiency 

The magnetic diverter efficiency as function of the proton energy has been calculated by R. Willingale7 with ray-tracing
simulations, but only for few energies and relative to the Wide Field Imager FoV. At present we lack a real modelization
for the X-IFU in the energy range of interest, so in the following we will use the upper limits on the fraction of 
transmitted protons for the WFI, scaling them by the ratio of the FoVs of the two instruments to obtain a conservative 
estimate for X-IFU (Figure 10). 

Mirrors focaalization efficciency 
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Figure 10. Soft protons fraction transmitted by the magnetic diverter as function of energy. The points are the upper values 
found for each energy with Monte Carlo simulations, and the line connecting them is a linear interpolation. 

 
However, due to the lack of data regarding the efficiency for to the X-IFU, and to the poor sampling in the range 1-100 
keV, these are to be considered just rough estimates. 
 
Proton energy losses 

In first approximation, we can conservatively assume that the protons do not lose energy in their interaction with the 
mirrors. The only energy loss will concern the radiation filters and the detector. 

For XIFU the filters baseline currently consists of a total 0.28 um Kapton + 0.21 um Aluminum, divided in 5 filters of 
identical thickness. For such configuration, from Geant4 simulation we have the transmission function shown in Figure 
11 – left, and the distribution of initial energies of protons that reach the focal plane with a residual energy in the range 
0.2<E<10 keV shown in Figure 11 – right, which can be taken as the transmission function for background-inducing 
protons. 
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Figure 11. Transmission function for protons impacting on the X-IFU filters with a flat spectrum (left), and the initial energy 
distribution of protons that reach the focal plane with energy inside the X-IFU sensitivity band (right). 

If we assume an impacting spectral shape ିܧଵ.ହ we can find the same distribution in a more realistic case (see Figure 12, 
left). Furthermore, from the corresponding cumulative distribution (Figure 12, right) it is easy to see that if we want to 
deflect 99% (99.9%) of protons that arrive at the focal plane with energies between 0.2 and 10 keV we must deflect 
protons with initial energies up to ~70 keV (80 keV). 

 

 
Figure 12. Distribution of initial energies of protons that reach the focal plane with energy inside the X-IFU sensitivity band, 
assuming an impacting spectral shape on the filters Eିଵ.ହ (left), and the corresponding cumulative distribution (right). 

 
The spectrum impacting on the filters however will be altered by the efficiency of the magnetic diverter. The effect of 
the transmission efficiency described in the previous section will be taken into account in the final computation. 
However, since the effect of the diverter is just to remove a fraction of the particles that would have impacted on the 
filters, the numbers derived in this section from Figure 11 – right and Figure 12 – right are conservative. 
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To evaluate the flux expected on the detector we have to fold the spectrum expected after the optics by the transmitted 
fractions, and by the transmission function of the filters (Figure 11 – right). The resulting spectra for particles that reach 
the FPA with energies inside the instruments sensitivity band are shown in Figure 13. 

 
Figure 13. Distribution of initial energies of protons that reach the focal plane with energy inside the X-IFU sensitivity band, 
assuming an input spectrum ∝ Eିଵ.ହ, the filters transmission functions derived in the previous section, with and without the 
magnetic diverter. 

 
Integrating these spectra we find the following expected fluxes of particles: ܨ	ௗ௩ = ܨ ,ଵିݏ	ଶି݉ܿ		6.5 = 8 × 10ିଷ		ܿ݉ିଶ	ିݏଵ for the case without a magnetic diverter and using the upper values on its transmission, 
respectively. We want these fluxes to be < 0.1 × ோீܤ = 5 × 10ିଷ		ܿ݉ିଶ	ିݏଵ, so the diverter should be able to reduce 
the flux of incoming soft protons by a factor ~1300. Our first conservative estimate of the efficiency of such diverter 
revealed that it brings the expected flux to the desired level. 
The current estimate will benefit greatly from an improvement of the sampling of magnetic diverter efficiency in the 1-
100 keV energy range with Monte Carlo simulations, from a series of simulations dedicated to the X-IFU instrument, 
and moreover from a more reliable estimate of the external fluxes of low energy particles expected in L2. The latter is 
expected as output of the AREMBES project. 
 

 

1.3 Non-stationary conditions 

During Solar Energetic Particle (SEP) events however the flux of high energy solar particles, usually negligible, can be 
enhanced by several orders of magnitude and reach the CR one, inducing additional background on the detector.  

We analyzed the largest SEP events during solar cycle n° 23 (covering the time period 1997 – 2009), by using 
ACE/EPAM, SAMPEX and GOES/SEM data (available at http://www.srl.caltech.edu/sampex/ DataCenter/DATA/ 
EventSpectra/). We selected sixteen SEP events extending to very high energies (> 100 MeV), which produce the so-
called ground level enhancements (GLEs). The fluence spectrum for each event was fitted by using a broken power law 
functional form8,9. The differential flux (dJ/dE) as a function of the particle energy can be expressed as:  
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where γa and γb determine the spectral slope at energies lower and higher of the rollover energy E0, respectively.

The left panel of Figure 14 shows the obtained fits for all the considered SEP events. It can be observed a variability of at
least two orders of magnitude both at low and high energy. In addition, the spectral slopes are quite similar below the 
rollover energy, whereas they greatly differ at high energy. After verifying that the three sets of parameters are not 
mutually correlated between each other, we computed an average fluence spectrum, whose parameters (〈C〉, 〈γa〉, 〈γb〉,
〈E0〉)  are obtained as the average value of each parameter over the considered SEP events: 〈C〉 = 6.37*108 p cm-2 sr-1 
MeV-1, 〈γa〉 = 1.24, 〈γb〉 = 3.18, 〈E0〉 = 29.45 MeV). The average spectrum is displayed in the right panel of Figure 14 
along with the one of the 4 April 2001 SEP event, which represents the worst case scenario at high energies.

Figure 14. Left: Fits of the energy spectrum, by using the so-called broken power law function, for the SEP/GLE events 
during solar cycle n° 23. Right: Average spectrum (red line) and worst case scenario (black line, 4 April 2001 SEP/GLE
event). 

In order to estimate the occurrence of high energy SEP events, we analyzed the > 100 MeV proton flux data recorded 
aboard the GOES satellite series over two solar cycles from 1986 to 2009. We found that the fraction of time the > 100
MeV proton flux exceeds the GCR level (assumed to be 4.4 p cm-2 s-1) is about 1%, with a mean SEP event duration of
~1.06 days. This percentage slightly increases to 4% and 2% during the maximum phase of the solar cycle n° 22 (from 
1988 to 1992) and n° 23 (from 1998 to 2002), respectively. Thus, these events are extremely unlikely, and the detectors 
will likely be shut down due to the even higher flux of low energy particles, so they pose no hindrance on the detector 
performances.

1.4 Conclusion  

With the new X-IFU instrument and FPA mass models, and the Monte Carlo software version and settings, we obtained 
an updated estimate of the GCR induced particle background for the instrument. In the baseline configuration we expect
0.01 p cm-2 s-1 in the 2-12 keV energy band. Starting from this result we addressed the two main components of the
unrejected background, secondary electrons and photons, and tested several solutions to reduce it.  

Regarding the reduction of the photons component we tested several bi-layers and tri-layers for the passive shielding, in 
order to block fluorescences from the Niobium. The best result was obtained using a bilayer made of 250 μm of Kapton 
and 1.3 mm of Si3N4, roughly halving the photon component and reducing the total background by ~25%.  

Regarding the secondary electrons component, we tested the performances of a composite shield, substituting the lowest 
section of the Kapton shield with Tungsten (1 cm high, 1 mm thick). This resulted in a background reduction of ~20%. 
The other solution tested, the insertion of a filter right above the detector, resulted in too high thicknesses required for
such filter to reduce the background by a significant amount. The reliability of this last result is yet to be confirmed by
the Geant4 processes validation activity foreseen in AREMBES.
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We also performed a first estimate of the background induced by low energy particles impacting on the Athena optics. 
We found that without any magnetic diverter we expect a focused particles flux ܨ	ௗ௩ = ଵ, severalିݏ	ଶି݉ܿ		6.5
OoM higher than the requirement. Using the upper values on the magnetic diverter transmitted fraction we obtained an 
expected flux ܨ = 8 × 10ିଷ		ܿ݉ିଶ	ିݏଵ. The requirement for the soft protons component of the background is for it to 
be < 0.1 × ோீܤ = 5 × 10ିଷ		ܿ݉ିଶ	ିݏଵ, so the diverter should be able to reduce the flux of incoming soft protons by a
factor ~1300. Our first conservative estimate of the efficiency of such diverter revealed that it brings the expected flux to
the desired level. The magnetic diverter transmission values we used are upper limits scaled from the WFI FoV, and 
assume an isotropic distribution of the protons at the focal plane, and thus this first estimate is to be considered 
conservative for X-IFU.

Finally, we have analyzed data from particle monitors in different locations in the solar system, with the aim to quantify 
the impact of solar events on the background, and found that the fraction of time the flux exceeds the GCR level is about
1%, with a mean SEP event duration of ~1.06 days. This percentage did not exceed 4% even during the maximum phase
of the solar cycle, thus we concluded that these events can be safely ignored. 
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