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Equations for the analytical calculation of gain and effective collecting area (length)
of lobster eye systems are presented. The effect of mirror spacing (pore width) is
analyzed, and equation for its optimal value with respect to effective collecting area
(length) is found. The equations are applicable for Schmidt and Angel lobster eye
designs.
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1 INTRODUCTION

The lobster eye (LE) optics has been used and is proposed to
be used in many astronomical instruments ( e.g., Baca et al.
2016; Collier et al. 2015; Fraser et al. 2002, 2010; Goren-
stein 2011; Owens et al. 2001; Petre et al. 2015; Tichý et al.
2015a). It is also being used in other applications, e.g., neutron
imaging (Šaroun & Kulda 2006).

LE X-ray optics exists in two basic concepts: Schmidt
(Schmidt 1975) and Angel (Angel 1979). Schmidt LE
(Schmidt 1975) can be one dimensional or two dimen-
sional. The basic one-dimensional Schmidt LE (SLE) stack is
schematically shown in Figure 1. In a real case, the grazing
angles are much smaller and the mirrors are closer together.
The system is composed of flat rectangular mirrors. These
mirrors form a uniform pattern around of a virtual cylinder of
center C and radius r. The point F represents the focus of the
system. The focal length of the optics is f = r/2 if it is com-
posed of mirrors of negligible thickness. A two-dimensional
Schmidt system is composed of two stacks of different radii
(r1, r2) perpendicularly arranged.

The Angel LE (ALE) optics (Angel 1979) is composed of
spherically arranged square pores. Approximately, the ALE
can be viewed as a special case of the Schmidt system where
both stacks lie in the same position and they have the same
radii (r = r1 = r2). In this case, two stacks of mirrors form
square pores. Although the spherical arrangement of the ALE

Abbreviations: ALE, Angel lobster eye; LE, lobster eye; SLE, Schmidt
lobster eye.

is different from the cylindrical arrangement of the SLE, the
difference is small. This is because the active part of the
system is limited by the reflectivity function and the reflec-
tivity falls to zero at small angles of a few degrees or less
than a degree. In such a small region, the approximation is
admissible.

For numerical simulations of LE optics, the general
ray-tracing approach is possible (see, e.g., Spencer & Murty
1962) or its simplified versions (Šaroun & Kulda 2006; Tichý
et al. 2016).

Analytic models are approximate but they express the result
(e.g., effective collecting area, gain, etc.) as a mathematical
function of the parameters. They are useful for approximate
but fast estimation of the performance. Analytic models are
also useful for finding the initial point for subsequent opti-
mization by ray-tracing simulations. In addition, analytical
models provide information on how the result depends on
the initial parameters. Some analytic equations for the lobster
system have already been presented (Angel 1979; Inneman
2001; Schmidt 1975) but they do not include all the param-
eters; e.g., zero mirror thickness is assumed. Su et al. (2017)
presented an analysis of the focusing efficiency as a function
of the X-ray wavelength, but the final results were based on
ray-tracing simulations of specific examples. Chapman et al.
(1991) presented a comprehensive analysis of the efficiency,
but the source was supposed to be at a finite distance and
the source lay on the concave side of the LE optics. This
configuration corresponds to, e.g., microscopes; however,
the configuration of telescopes is different. For application in
telescopes, the source must be at an infinite distance on the
convex side of the LE optics.
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FIGURE 1 Lobster eye geometrical parameters

This paper follows the previous work of some of the
authors (Tichý et al. 2015b, 2018). The effective collecting
area (length) and the gain are expressed as functions of the
LE parameters. Equations for the optimal parameters that
maximize the effective collecting area (length) are presented.

2 GENERAL EQUATION

As in several papers (Chapman et al. 1991; Schmidt 1975; Su
et al. 2017; Tichý et al. 2015b, 2016), the problem of a single
LE stack is analyzed in the cross-sectional plane. The geom-
etry of the stack is described by the following parameters
(Figure 1): radius of the system r; middle mirror spacing from
surface to surface (pore width) a; mirror thickness (pore wall
width) t, mirror (pore) depth h, and the number of mirrors N.

The parameter 𝜁 ≈ arctan(a/h)≈ a/h is called the effective
angle (Inneman 2001; Schmidt 1975; Tichý et al. 2015b). In
this paper, 𝜁 will be used as an independent parameter instead
of h. The variable 𝛽 represents the angular position of a mir-
ror. Parallel incoming rays are assumed, and therefore 𝛽 = 𝜃,
where 𝜃 is the grazing angle of reflection.

The general equation for the effective length, including the
mirror reflectivity and all geometrical parameters, has been
derived as (Tichý et al. 2015b, 2018)

L ≈ 2r
a + t

[
∫

𝜁

0
ℎ𝜃(𝜃)𝑑𝜃 + ∫

2𝜁

𝜁

(2a − ℎ𝜃)(𝜃)𝑑𝜃
]
. (1)

Here, it was assumed that the mirrors are placed at least in
all angular positions between ±2𝜁 , i.e., their number fulfills
the condition N > 2 a

a+t
r
h
. (𝜃) is the reflectivity function.

Because ∫ q
p 𝜃(𝜃)𝑑𝜃 =

[
𝜃 ∫ (𝜃)𝑑𝜃

]𝜃=q
𝜃=p −

∫ q
p ∫ (𝜃)d𝜃d𝜃, Equation 1 can be modified to the following

form (Tichý et al. 2018):

L(r, a, t, 𝜁) = 2r a
a + t

K(𝜁), (2)

where

K(𝜁):=̃(2𝜁) − 2̃(𝜁) + R̃(0)
𝜁

(3)

and ̃(𝜃):= ∫ ∫ (𝜃)d𝜃d𝜃 is an arbitrary second antideriva-
tive of . Equations 2 and 3 allow us to calculate the effective
collecting length of an LE of given geometrical parameters
with a given model of reflectivity. These equations represent

a single stack that is inspected in a cross-sectional plane,
and therefore we refer to the collecting length here rather
than the collecting area. Its transformation to the effective
collecting area is simple. For the one-dimensional system,
L is multiplied by the mirror width to get the effective area.
The effective collecting area of the Angel system equals L2,
whereas the effective collecting area of a Schmidt lobster
system composed of two stacks of effective areas L1(r1, a1,
t1, 𝜁1) and L2(r2, a2, t2, 𝜁2) equals L1L2.

Equations 2 and 3 clearly show the form of the dependence
on some parameters. First, it is seen that the effective collect-
ing length is proportional to the radius of the system. Second,
the effective collecting length is proportional to a/(a+ t). This
term can be interpreted as the ratio between the total size of
the input aperture and the part that is shaded by the sides of
the mirrors (Inneman 2001; Tichý et al. 2015b). For a sys-
tem composed of ideal mirrors of zero thickness, this fraction
would be equal to 1.

The function K depends on the effective angle, i.e., the ratio
between the mirrors’ depth and spacing, and the reflectivity
function only. The calculation and maximization of K for var-
ious reflectivity models was presented by Tichý et al. (2018).
There are equations for the optimal value of 𝜁 . For example,
for a model is called the smoothed step, defined as

(𝜃) =
⎧⎪⎨⎪⎩

Q ∀0 ≤ 𝜃 ≤ 𝜌

Q 𝜅−𝜃
𝜅−𝜌

∀𝜌 ≤ 𝜃 ≤ 𝜅

0 ∀𝜃 ≥ 𝜅

. (4)

here, 𝜃 is the grazing angle, and 0<𝜌<𝜅 and 0<Q≤ 1 are
constants. The optimal value of 𝜁 is given by

𝜁optimal =
⎧⎪⎨⎪⎩
{

cos
[

1
3

arccos(𝜎3) + 𝜋

3

]
+ 1

2

}
𝜅 if 𝜎 ≤ 𝜎c√

6(𝜎2 + 𝜎 + 1) 𝜅
6

if 𝜎 ≥ 𝜎c,
,

(5)

where 𝜌= 𝜅𝜎; 0<𝜎 < 1, and 𝜎c = 1+
√

21
10

= 0.558.

3 OPTIMAL VALUE OF MIRROR SPACING

The nirror thickness t can be considered to be governed
by other requirements, e.g., the mechanical integrity. By
Equation 2, it should be as small as possible to achieve the
largest collecting length.

There is one free parameter a (mirror spacing/pore width)
left. Analysis of the effect of this parameter on the perfor-
mance of an LE system is the subject of this paper.

Let R= (r + h/2) be the total distance between the focus and
the front aperture, i.e., the total length of the telescope. This
is a value that can be also given by design considerations.

After substitution into Equation 2, we obtain

L(r, a, t, 𝜁) = 2𝑅𝜁𝑎 − a2

𝜁(a + t)
K(𝜁). (6)
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FIGURE 2 Graph of the function K versus the effective angle 𝜁

FIGURE 3 Graph of the effective collecting length L versus the mirror
spacing (pore width) a

The maximum of the function 6 is easy to find by com-
mon methods of mathematical analysis. There exists just one
maximum of function 6, which is

aoptimal = −t +
√

2𝑅𝑡𝜁 + t2. (7)

4 EXAMPLE

A system of total length R= 500 mm composed of a mir-
ror of thickness t= 0.1 mm is assumed. Mirrors are coated
by titanium, and the photon energy is equal to 2 keV. The
smoothed step model parameters are Q= 0.9 and 𝜌= 17 mrad,
and 𝜅 = 23.5 mrad is chosen as the relevant approximation of
reflectivity. The graph of K versus 𝜁 is shown in Figure 2. By
Equation 5, the optimal value of 𝜁 = 14.4 mrad corresponds
K = 0.0106.

The value 𝜁 = 14.4 mrad is consequently used to find the
optimal value of a. The graph of L versus a given by
Equations 2 and 3 is shown in Figure 3.

By Equation 7, the optimal value of a= 1.10 mm. In this
optimal case, the effective collecting length calculated by
Equations 2 and 3 is L= 8.97 mm.

5 GAIN

Because incoming rays are focused to a spot of size a (Schmidt
1975), it is easy to express the gain G as

G = L
a
= 2𝑅𝜁 − a

𝜁(a + t)
K(𝜁). (8)

FIGURE 4 Graph of the gain G versus the mirror spacing (pore width) a

However, the function 8 is monotonically decreasing and
there is no optimal value of a with respect to gain. This is
because the spot size is equal to a only if a ≫ t. Therefore,
the equation is not valid for small values of a. Searching for a
general formula for gain is the subject of further research.

The graph of gain G versus a for the same example as in the
previous section is shown in Figure 4.

6 CONCLUSIONS

It was found that for a given total length of telescope, mirror
thickness, and mirror reflectivity, there exist optimal values
of all remaining geometrical parameters of the LE. The aim
of this paper was to find an optimal value of mirror spacing
of SLE or the pore width of ALE. The equation for gain was
derived, but it is valid only if the mirror spacing (pore width)
is much larger than mirror thickness (pore-wall width), and
therefore the equation does not allow us to find the optimal
value of mirror spacing (pore witdth) with respect to gain.

The equations presented here were derived for a
one-dimensional stack of cylindrically arranged flat mirrors,
i.e., for a one-dimensional SLE. They can easily be applied
to a two-dimensional SLE composed of two such stacks.
Calculations can be made for each stack independently. The
resulting gain or effective collecting area is calculated as the
product of the gain or effective collecting lengths of both
stacks. In the case of ALE, the gain or the effective collecting
area is approximately equal to the square of the gain or the
effective collecting length of a 1-D Schmidt system.
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