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ABSTRACT

We are developing the frequency domain multiplexing (FDM) read-out of transition-edge sensor (TES) mi-
crocalorimeters for the X-ray Integral Field Unit (X-IFU) instrum ent on board of the future European X-Ray
observatory Athena. The X-IFU instrument consists of an array of � 3840 TESs with a high quantum e�ciency
(> 90 %) and spectral resolution � E=2.5 eV @ 7 keV (E=� E � 2800). FDM is currently the baseline readout
system for the X-IFU instrument. Using high quality factor LC �lter s and room temperature electronics de-
veloped at SRON and low-noise two stage SQUID ampli�ers provided byVTT, we have recently demonstrated
good performance with the FDM readout of Mo/Au TES calorimeters with Au/Bi absorbers. An integrated
noise equivalent power resolution of about 2.0 eV at 1.7 MHz has been demonstrated with a pixel from a new
TES array from NASA/Goddard (GSFC-A2). We have achieved X-ray energy resolutions� 2.5 eV at AC bias
frequency at 1.7 MHz in the single pixel read-out. We have also demonstrated for the �rst time an X-ray energy
resolution around 3.0 eV in a 6 pixel FDM read-out with TES array (GSFC-A1). In this paper we report on the
single pixel performance of these microcalorimeters under MHz AC bias, and further results of the performance
of these pixels under FDM.

Keywords: Athena, X-ray Integral Field Unit (X-IFU), TESs, X-ray microcalorimeter , frequency domain
multiplexing (FDM) read-out

1. INTRODUCTION

Future X-ray astronomical satellite Athena1 (2028� ) aims to unveil the hot and energetic side of the Universe.
In order to accomplish the goal, Athena will employ two focal plane instruments such as Wide Field Imager
(WFI 2) and X-ray Integrated Field Unit (X-IFU 3, 4). The X-IFU instrument will provide a superb X-ray spectral
(� 2:5eV < 7 keV) and spatial (� 5

00
) resolutions. Transition edge sensors (TESs) X-ray calorimeter isa current

baseline of the X-IFU instrument. X-ray calorimeter is a cryogenic non-dispersive spectrometer. TESs use a
sharp resistance drop of a superconducting �lm as a thermometeroperated around 100 mK. With high sensitive
thermistor TESs, X-ray calorimeter can archive superb spectralresolution5 (� 1 eV @ 6 keV). Furthermore,
because of a non-dispersive spectrometer, TESs X-ray calorimeter can be used for di�use objects such as super
nova remnants, galaxies and galaxy clusters.

Although TESs X-ray calorimeter will innovate X-ray spectroscopy of cosmic plasma, the instrument needs to
satisfy severe constraints on the satellite (the electrical and thecooling power). Therefore, a multiplexing readout
of the TESs X-ray calorimeter is crucial technology. SRON is developing the frequency domain multiplexing
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(FDM) readout. In the FDM, TESs are coupled to a passive LC �lter a nd biased with alternating current (AC
bias) at MHz frequencies. Each LC resonator should be separatedbeyond detector thermal response (< 50
kHz) to avoid crosstalk between neighboring resonators. To satisfy XIFU requirements, a multiplexing factor
of 40 pixels/channel in a frequency range from 1 to 5MHz required.The detailed description of the bandwidth
requirement of FDM is given in J. van der Kuur et al. 2016.6 In this paper, we report on our recent progress in
the development of the SRON FDM read-out for a NASA/GSFC TESs calorimeter array.

2. NASA/GSFC TES MICROCALORIMETER ARRAY

For the FDM demonstration, we are using two di�erent NASA/GSFC T ESs arrays: (1) 8� 8 uniform array
(GSFC-A1) and (2) Mixed array (GSFC-A2). The basic properties of these array are summarized in Table. 1.
Both the arrays show an excellent performance under the DC bias,typically 1.8{2.4 eV. The TESs consist of thin
Mo/Au bilayer �lms and have 250 � 250 um BiAu-mushroom absorbers. Both TESs array have an Au layer on
top of Si substrate to reduce thermal crosstalk and the bath temperature uctuation due to X-ray photon attack
onto the Si. The basic properties of GSFC-A1 are reported by C. Kilbourne 2007,7 Iyomoto et al. 2008,8 etc.
GSFC-A2 has di�erent absorber connections and wiring con�guration. The absorbers are connected to TESs via
T-type stem structures. The wiring of GSFC-A2 is made of the strip-line to increase �lling factor and reduce
electrical cross-talk. GSFC-A2 also has an better thermalization layer than GSFC-A1, which reduces thermal
crosstalk in the array.

The TES arrays are clamped by Cu bars and thermally coupled to the Cu bracket via several Au bonding
(Fig.1). With GSFC-A1, we have improved our FDM readout system and investigated the detector performance
under AC bias (Akamatsu et al. 2013,9 14,10 1511 and Gottardi et al. 2012,12 14,13 1614).

Table 1. Basic properties of GSFC TESs calorimeter array

TES size Absorber Transition Normal state Saturation Temperature
[� m2] size [� m2] temperature [mK] resistance [m
] power [pW] sensitivity � �

GSFC-A1 140 250 95 7.5 � 6.5 60
GSFC-A2 100 250 93 8.3 � 4.7 70

120 250 95 9.0 � 6.1 70
140 250 97 9.8 � 7.2 80

� : Dimensionless temperature sensitivity of the thermistor� � dln R
dln T

Figure 1. Zoomup picture of 8 � 8 TESs GAFC-A2. TESs chip is clamped by Cu bars and thermally c onnected with Au
wire bondings.



Figure 2. Left and middle: Pictures of the FDM set-up. Right t op: Example of the bath temperature stability. Throughout
a day, the bath temperature is reasonably stable with � = 0 :6 � K at 60 mK. Right bottom: Example of the network
analyzer scan. We connected 6 GSFC TESs calorimeters in series with the LC �lters with resonance frequencies of 1.3,
1.5, 1.7, 2.4, 3.4 and 3.9 MHz respectively. Red and Blue indicate the network analyzer scan via AC bias and Feedback
line, respectively.

3. EXPERIMENTAL SETUP

Cryostat: For the FDM demonstration, we are using a cryogen free dilution cooler� (Fig. 2). The cooler has
a huge cooling power� 400 � W@ 100 mK, which hosts several setups. Currently 2 FDM set-ups with s X-ray
calorimeter array are installed. We have developed stable magnetic �eld and light tight set-up. 13 We employed
a high-� metal Cryoperm shield and superconducting Nb shield. The Nb shield cools down from one point from
the detectors side to control ux trapping. Furthermore, we int roduced a Helmholtz coil to investigate TESs
response as a function of the applied magnetic �eld. With a similar setup, we have demonstrated an ultra-low
NEP (Noise equivalent power) bolometer for the �rst time ( NEP dark � 1� 10� 19 W=

p
Hz: Suzuki et al. 201615).

For the performance evaluation of TESs calorimerter, stable bathtemperature is of importance. We employed a
highly sensitive Ge thermistor, which has a temperature sensitivity� (� dln R

dln T ) � 5 at 50 mK.

Room temperature electronics: SRON is developing room temperature electronics for the FDM readout.
The details are summarized in den Hartog et al. 2009.16

SQUIDs: We are using low-noise two-stage SQUID ampli�ers provided by VTTy. The SQUID ampli�ers are
mounted on the Cu bracket and cooled down together with other experimental components. For the single pixel
characterization, we employed SQUIDs, which are nearly quantum-limited with an coupled energy resolution
� 20�h at 20 mK. The SQUID input current noise shows 1-2 pA/

p
Hz over the required frequency range between

1{5 MHz as expected for these SQUID ampli�ers. The detailed information about the VTT SQUID ampli�ers
can be found in L. Gottardi et al. 2015.17 For the multiplexing demonstration, we employed a higher dynamic
range SQUIDs at the cost of slightly higher noise 4-6 pA/

p
Hz.

Superconducting transformer: We employed a superconducting transformer to match the read-out impedance
to the low ohmic impedance (� 7 � 10 m
) of the GSFC TESs calorimeter (Tab 1) and optimize the SQUID
dynamic range. In our setup, the superconducting transformerworks as to match the SQUID dynamic range
and the impedences between TESs and SQUID. In this paper, we areusing SRON lithographic superconducting
transformers with a coupling ratio n = 5 or 8.

� http://www.leidencryogenics.com/
yhttp://www.vttresearch.com/



Figure 3. Left top: the integrated NEP resolution as a functi on of the normalized TES resistance. Red and gray points
represent 120 � m pixel of GSFC-A2 with 1.7 MHz AC bias and DC bias, respective ly. Left bottom: the integrated NEP
resolution as a function of applied magnetic �eld. Right: En ergy spectrum of Mn-K � X-rays. The data is shown in red
crosses. The blue curves show the best �t model.

LC �lter: SRON developed low-losses lithographic LC �lters for the FDM readout. The LC �lter made of
a-Si:H with gradiometric geometry and strip-line wiring to reduce common impedance and mutual inductance.
The nominal inductance of the coil used in each �lter isL=400 nH (GSFC-A2) or 2 � H (GSFC-A1). The detailed
information about the LC �lter can be found M. Bruijn et al. (2012). 18

4. RESULTS

Here we present the results of the single pixel characterization ofGSFC-A2 at 1.7 MHz AC bias. The 120
� m TES calorimeter pixel was connected to a 1.7 MHz LC resonator (L =400 nH) with a 1:8 superconducting
transformer. We used the55Fe X-ray source, which was mounted on the Nb magnetic shield and cooled down
together. To avoid X-rays hitting the Si substrate, we employed aCu collimator with a hole, which �ts the size
of the TES array. Typical count rate to TESs is about 1.0{1.5 counts/s.

In order to evaluate the detector performance under AC bias, wecharacterized the integrated NEP resolution.
The integrated NEP resolution reects a potential performance under given measurement set-up. The integrated
NEP resolution was estimated based on below formula

� ENEP =
� Z

4df
NEP (f )

� � 1

; (1)

where NEP (f ) � en ( f )
Sv ( f ) , en (f ) and Sv (f ) are the detector noise spectral density and responsivity, respectively.

The top panel of Fig. 3 shows the dependency of the NEP resolutionon the TES bias point (red points). The



horizontal axis is normalized on the normal state resistance. The gray points show the results of DC bias. Within
a scatter of the data, the integrated NEP resolutions under AC bias are almost comparable to the DC bias case.
The pro�le shows a stable NEP resolution as 2:0 � 2:3 eV between TES resistanceR = 0 :1 � 0:4 RN and the
best resolution as� 2.0 eV at R = 0 :12 RN . As previously reported,11 the degradation of the integrated NEP
resolution under AC bias has been observed at small TES resistanceregime (R < 0:25 RN ) with GSFC-A1 array.
On the other hand, there is no signi�cant di�erence between AC and DC19 bias with the GSFC-A2 array. The
TES parameters (Tab. 1), the magnetic �eld sensitivity (Fig. 3) and the impact of the weak-link e�ect 20{22 may
be responsible for the di�erence.

To assess the X-ray resolution of the TESs calorimeter, we applied the optimal �lter to the X-ray pulses.
After the drift and non-linearity correction, we �tted Mn-K � line with a line model by Holzer et al (1997).23 For
the �tting, we employed the Cash statistic 24 to minimize �tting bias (see the SPEX user manualz chapter 2.12
for a detail). The best-�t parameter then was obtained by minimizing the C-stat parameter. The best X-ray
energy resolution under 1.7 MHz AC bias is � E = 2 :54 eV at 5.9 keV, which is close to typical values under DC
bias (2.0{2.4 eV). The di�erence between the integrated NEP and X-ray resolution could be cause by thermal
and mechanical uctuations induced by the external environment. This e�ect is currently under investigation.

Finally we briey report on a preliminary result of 6 pixel FDM demonstr ation. For the FDM demonstration,
we used relatively stable (temperature and magnetic �eld) set-up,which hosts GSFC-A1 array. As described in
Sec 2, the GSFC-A1 array is connected 2� H coil LC �lter. We connected 8 TES calorimeters, to LC �lters with
resonance frequencies of 1.10, 1.27, 1.38, 1.55, 1.75, 2.05, 2.45 and2.55 MHz respectively. Because of undesired
detector behaviors (too fast detector response), the TESs connected to 1.10 and 1.38 MHz are excluded from
the multiplexing measurement. With this condition, we demonstrated 6 pixel multiplexed read out with typical
energy resolutions of� 3 eV for the �rst time.

Contrary to the previous 2-pixel multiplexing, 25 there is a small performance degradation as a result of 6-
pixel multiplexing from � 2:8 eV (single pixel mode) to � 3.2 eV (6-pixel multiplexing). The degradation can
be explained by sub-optimal components such as TES array and LC �lter. The bias line layout of the TES
array used for multiplexing experiment showed excess cross talk. Consequently, undesired electrical cross-talk
is generated. Furthermore, the thermalization e�ciency of the ar ray is an issue. We observed strong thermal
cross-talk between TESs and a sign of X-ray hit on the Si substrate. We also observed an electrical cross-talk
which is most likely related to a common impedance and mutual inductance in this speci�c LC �lter version.
The degradation will be improved by the new generation of LC �lters with minimised common inductance and
mutual inductance and by the new generation of detector currently under fabrication at NASA/Goddard. In
parallel, the demonstration of the FDM readout is still ongoing and the results will be reported in the near
future.

5. SUMMARY AND FUTURE PROSPECT

We are developing the Frequency Domain Multiplexing readout of TESscalorimeter for the X-IFU onboard the
future X-ray astrophysical satellite Athena. By employing a new TES calorimeter array, we have demonstrated
an integrated NEP resolution of 2:0 � 2:3 eV under AC bias at 1.7 MHz, which is consistent with the results of
DC bias measurements. The energy resolution of� 2:5 eV at 5.9 keV with the single pixel MHz AC bias readout
is also presented.

For the near future we are preparing a new experimental setup, which is shown in Fig. 4. This setup is design
to test 2 � 40 pixels FDM readout. For this demonstration, we will employ (1) a uniform GSFC TESs array
with will have similar properties of GSFC-A2, (2) new LC �lter and (3) X -IFU dedicated SQUID array. The
�rst cool down of the set up is expected to be around early winter of 2016.
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Figure 4. CAD image of 40� 2 pixel demonstrator.
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